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Electron distribution function in an electron-beam plasma
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The spatial energy distribution function of secondary electrons in an electron-beam plasma is
studied via a solution of the Boltzmann equation written in the integral form. It is shown that the
electron energy distribution function essentially depends on the distance from the center of a primary
beam, even with a homogeneous density of a gas medium. Good agreement between the theoretical
predictions of the spatial dependence of the electron distribution function and experimental data

has been obtained.
PACS number(s): 52.40.Mj, 34.80.Gs, 34.80.Dp

L INTRODUCTION

The electron distribution function (EDF) under differ-
ent conditions is the research subject of a large number of
studies. Several approaches for determination of the EDF
exist (1, 2]. Monte Carlo methods and methods based on
the Boltzmann equation are used most often in papers.
Traditionally the Boltzmann equation was applied for the
determination of the EDF in discharge plasma [3] as well
as in electron-beam plasma [2, 4] under quasistationary
homogeneous conditions. In this case the EDF is deter-
mined averaged over the space [2-4]. Thus the informa-
tion on the spatial structure of the distribution function
is lost. A spatial distribution of electrons is an impor-
tant characteristic for the diagnostics of flows and jets of
low density, in studies of the phenomena of atmospheric
physics, and in studies of the processes of the deposition
of thin films from gas mixtures when the electron beam is
used for excitation. In the electron-beam plasma with the
aim of the determination of the EDF as a function of elec-
tron energy and position traditionally the Monte Carlo
method has been used [1, 5, 6]. The Boltzmann equation
has been applied more rarely for the same purpose [7].
Evidently, this situation connects with the simplicity of
modeling using the Monte Carlo method. However, the
employment of the Boltzmann equation has its own ad-
vantages. In particular, there is a possibility to perform
qualitative analysis if we have an opportunity to get any
analytical expressions.
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The purpose of the present paper is to study the spa-
tial energy distribution of electrons generated by a high-
energy electron beam passing through a gas medium.
The Boltzmann equation for the EDF written in the in-
tegral form is employed. The equation takes into ac-
count the energy spectrum of secondary electron genera-
tion under gas ionization, their escape from the genera-
tion region, and energy degradation under activation of
molecules (atoms). Calculations are performed up to the
first excitation threshold. Electron-electron and electron-
ion collisions, multistage ionization, and superelastic col-
lisions were neglected. In addition, electron energy losses
under elastic scattering on molecules were ignored. These
assumptions are rather justified for the range of electron
energies under consideration in the case of weakly ion-
ized plasma, and low pressure electron-beam plasma is
exactly this case.

II. BOLTZMANN EQUATION
FOR SECONDARY ELECTRONS

In this paper we consider the passage of the electron
beam through the gas mixture of spatially homogeneous
density. To determine the steady-state distribution func-
tion of electrons generated by the electron beam in a gas,
we employ the integral Boltzmann equation [7, 8] which,
if extended to the case of a gas mixture, takes the form
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where n’; is the density of the kth component of the gas
mixture, oei(e) is the momentum-transfer cross section
of electron scattering on gas molecules, o;(e) is the ion-
ization cross section, oj(e + Ae;) is the inelastic cross
section with the energy loss Ae; by excitation, oi(e) is
the total scattering cross section, g(e, e’) is the spectrum
of secondary electron generation, I is the ionization en-
ergy of the gas molecules, m. is an electron mass, v is
the velocity of primary electrons of the beam, F is the en-
ergy of primary electrons, and nb(7) is the spatial shape
of the primary electron beam which was considered mo-
noenergetic.

The steady-state distribution function f (?, e) specifies
the number of the secondary electrons per unit volume

in unit velocity interval, i.e., f (7, e) is normalized by
— —
ne(r) = /dvf(r,e),

where ne(?) is the density of the secondary electron.
Equation (1) is written on the assumption of isotropic

angular dependence of electron scattering cross sections
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o* =1 A2 ry is the electron-beam radius, and Jo(vr)
is the Bessel function of zeroth order.

Equation (2) may be solved in the following way. Tak-
ing into account that there are no electrons with the en-
ergy exceeding that of primary electrons, and consider-
ing the electron generated as a result of ionization of the
k molecule by the electron with the energy e as a sec-
ondary electron if its energy is e; < (e — Ix)/2, we find

o (z,emax) from (2), where emax = (E — I;)/2. Then
we add @ (2, emax) to the first term in Eq. (2), and find

~

@ (z,e) for lesser energy values. Performing the inverse
Bessel transformation, we obtain the final expression for
the EDF.
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in different processes. The elastic cross section is replaced
by the momentum transfer cross section. The differen-
tial scattering cross section for the kth scattering process
ok (e, ¢) is replaced by o (e)/4m, where ok(e) is the in-
tegrated cross section for the kth inelastic process.The
abandonment of this assumption would lead to the essen-
tial complication of Eq. (1) and the subsequent solution.

The isotropic scattering model is used most in stud-
ies [2-4,6,7,9]. The question concerning applicability of
this model remains open if the model does not determine
the limits of validity. However, in the case in which the
scattering is not strongly dependent on the angle we can
make the approximation of isotropic scattering. In ad-
dition, we are going to examine the suggested model by
means of comparison between the theoretical results and
results of experiment. We can confirm that the isotropic
model is not unreasonable, at least from the point of
view of qualitative description of realistic phenomena, if
the results of comparison are successful.

Thus we consider the interaction of the electron beam
with the gas in the framework of the isotropic scattering
model. The following equation for the Bessel transform
of the EDF can easily be obtained from Eq. (1) (see Ap-
pendix) for a cylindrically symmetric electron beam:
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III. THE EDF AND EXCITATION RATES

As to understanding of physical processes occurring
upon collisions of electrons and molecules, nitrogen ap-
pears to be the best-studied system. This is one of the
reasons for which it has been chosen as the subject of
investigation. In our calculations we employed the fol-
lowing data on the cross sections of Nj: the ionization
cross section [10], the electronic excitation cross sections
[11], and the momentum-transfer cross section [12]. The
generation spectrum of secondary electrons is taken from
Ref. [13].

To analyze the EDF, it is also necessary to choose the
spatial shape of the primary electron beam. Choosing
it Gaussian and taking into consideration that the to-
tal number of electrons in the beam is specified by the
beam current J and velocity of electrons vy, for the Bessel
transform w(v) we get

w(v) =

2,2
21rqevbexP{_V ro/4} (3)

where ¢, is the electron charge.
Using expression (3), for the EDF we obtain
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where o = >, nko*r,.

Figures 1 and 2 show the energy dependence of the
EDF at different distances from the center of the pri-
mary electron beam at the densities of nitrogen 106
cm~3 and 10'® cm~3. It is seen that at short distances
from the center of the beam the form of the energy de-
pendence remains practically unchanged. However, at
long distances (r = 107g) essential differences are ob-
served. In particular, at ny = 10'® cm™3 the secondary
electron density in the energy interval from e; to e; + de
within the range 100 eV < e; <1 keV becomes the same
(Fig. 1). This result shows that even at homogeneous
density of the gas medium the energy dependence of the
EDF can vary at different spatial points. Thus the use of
the EDF determined from the Boltzmann equation under
spatially homogeneous conditions [2—-4] may lead to incor-
rect results, for example, in interpreting experiments on
electron-beam plasma diagnostics.

The excitation rate of the jth electronic state of k
molecules is defined as

Fy(r) = n* /D  dvvo(@)f(re) 5)

where o;(e) is the excitation cross section of the jth elec-
tronic state, the cross section of ionization or dissociation
of a molecule. N

The spectral function @ (z,e) allows one to calculate
the spatial profile of the excitation rate of a molecule by
secondary electrons without calculating the explicit form
of the EDF. Substituting (4) into (5) yields

nko*vpa?

Fj(r) = -2 2 /:o dxzJo(zar/ro)w(z) Ej (), (6)

where Ej (z) = [de d;(e) E(m, e).
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FIG. 1. The energy dependence of the EDF at different
distances from the center of the primary electron beam. 1,r =
0; 2,7 = ro; 3, 7 = 5r0; 4, r = 10r¢ . The gas density
ng = 10'® cm™3, the energy of electrons in the beam E = 5
keV, the electron-beam radius 7o = 5 mm.
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FIG. 2. The energy dependence of the EDF at different
distances from the center of the primary electron beam. 1,7 =
0; 2, r = 10ro . The gas density ny, = 10'°cm™3, the energy
of electrons in the beam F = 5 keV, the electron-beam radius
0o = 5 mm.

The spatial dependence F;(r) provides important ini-
tial information which can serve as a basis for the cal-
culation of the kinetics of excited particles and for the
determination of plasma composition. Besides, there is a
possibility of comparing the calculated dependence Fj(r)
with experimental data on the spatial dependence of radi-
ation intensity of short lifetime states of molecules when
the gas motion does not affect measurements.

IV. EXPERIMENT

The above model of the interaction between the elec-
tron beam and a gas has been tested by comparing the
excitation rate profiles of the state B 23X} of the nitro-
gen ion and the state C3II, of the nitrogen molecule
with radiation profiles of the first negative (the transi-
tion B?X} — X 2X}) and the second positive (the tran-
sition C *II, — B3Il,) nitrogen systems. This choice is
determined by the fact that the states B2X} and C 311,
are excited in electron-beam plasma by direct electron
impact [7] and have short lifetimes.

Experiments have been carried out on the gas dynam-
ics setup of low density [14]. The vacuum chamber of
the volume ~ 10 m® was pumped by oil pumps of the
total capacity 35 m3/s. The measurements were taken
under quasistationary conditions with the gas flow being
insignificant. All measurements were performed at gas
temperature 7 = 298 K. Pressure was measured by an
ionization converter with the error not exceeding 20%.
The electron beam of the diameter ~ 3 mm was gener-
ated by an electron gun with electromagnetic lens and
deflection system. The energy of electrons was E = 5.5
keV, the current 7 = 5 mA.

The electron-induced fluorescence was simultaneously
detected by the monochromator (the wavelength range
2000-8000 A, the value of the inverse linear dispersion
D = 6.5 A/mm) and x-ray detector measuring the in-
tensity of continuous and characteristic x-ray radiation
with the energy of photons £€ > 4 keV. The aperture
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of the x-ray detector was limited by a collimator with
rectangular cross section. The axis of the collimator and
optical axis of the monochromator were perpendicular to
the electron-beam axis. The size of the collimator in the
direction perpendicular to the electron beam was [ = 2
mm. Optical radiation was collected to the monochro-
mator by a lens with the focus distance 290 mm and
the diameter 100 mm. The half-width and height of the
monochromator slit were § = 0.1 mm and A = 10 mm,
respectively. The x-ray detector and spectrometer were
installed on coordinate mechanisms which allowed us to
measure the profile of radiation excited by the electron
beam.

V. COMPARISON WITH EXPERIMENT
AND CONCLUSIONS

According to the above procedure of measuring radia-
tion intensity, the comparison with experiment requires
that the complete excitation rate

Fj(r) = Fj(r) + F7(r)

must be averaged over the observation region. F]P (r) de-
notes the contribution of primary electrons. In the case
of a monoenergetic electron beam of the Gaussian shape,
the contribution of primary electrons to excitation is de-
fined by the expression

k .x

nto*J
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Substituting (3) into expression (6) for the rate of exci-
tation of the jth state by secondary electrons, we obtain
k % 2 oo
nio*Ja
Fi(r)= ——g—————/ dz xJo(xzar/re
s ="2 e | (zacr/ro)
X exp {—x2a2/4} Fj(z).

The observation region is specified by the distance from
the lens to the monochromator, the focus distance of the
lens, and the relative hole of the monochromator. To
obtain the final quantity which can be compared with
the experimentally measured value, one should perform
integration exactly over this region:

zo+6 oo
F(zo) =/ ) dm/ dy G(z,y)Fj(z,y) ,

where x¢ is the displacement of the monochromator from
the axis directed from the lens center to the electron-
beam center; G(z,y) is the detector function defining
the integration domain and the weight of each source of
radiation excited by an electron. The detector function
G(z,y) has been calculated on the assumption that the
lens is ideal.

Figures 3 and 4 show the results of calculations of radi-
ation profiles of the first negative (A = 391.4 nm) and the
second positive (A = 337.1 nm) nitrogen bands as com-
pared to experimental data obtained as the monochroma-
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FIG. 3. The radiation profile of the band (00) of the first
negative system of nitrogen. Experimental data: x, the gas
density ng = 9 x 10* cm™3, the beam radius ro = 3.2 min;
O,ng = 2.7 x 10** cm™3, ro = 2.6 mm; A,ng = 8.7 x 10*3
cm“s, 7o = 2.5 mm. The solid line represents the calculated
excitation rate profile of the state B ?%} in experimental con-

ditions at the corresponding density of nitrogen.

tor moved along the electron-beam radius. The electron-
beam radius roy employed in the calculations has been
chosen by the profile of x-ray radiation intensity, assum-
ing that high-energy x-ray photons are generated solely
by primary electrons. The calculated excitation rate has
been assumed to be proportional to the rate of excitation
to the zeroth vibrational level for all energies of electrons.

Calculation results represent all peculiarities of experi-
mental findings at different pressures with a good degree
of precision. The behavior of secondary electrons is more
clearly demonstrated in Fig. 4, which shows the radia-
tion intensities of the band (00) of the second positive
system of nitrogen. Since the excitation cross section of
the state C 3II, decreases sharply with increasing energy
of the exciting electron, radiation of this system is excited
by secondary electrons only.

It is to be noted that spatial distribution of secondary
electrons is essentially wider than the localized beam
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FIG. 4. The radiation profile of the band (00) of the sec-
ond positive system of nitrogen; conditions and designations
same as Fig. 3.
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of primary electrons. This result should be taken into
consideration during electron-beam measurements and in
plasma chemical reactors with electron-beam activation
of reactants etc.

Good agreement between theoretical results and ex-
perimental evidence in nitrogen allows a definite conclu-
sion on the ability of the above model of the interac-
tion between the electron beam and a gas to adequately
represent the spatial energy distribution of electrons in
electron-beam plasma, thus the model may also be used
for other gas media.

N
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APPENDIX

Taking into account that in cylindrical coordinates

S5 -
|7 —r'|= /72 4712 - 2rr' cos(p — ¢') + (2 — 2)2,

where 7, z are spatial coordinates, the z axis is directed
along the electron beam, and ¢ is the azimuthal angle,
we have
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Thus Eq. (1) can be written

- [, a8 [ ezl |z 2 Vo %)
a:’n’; 0

Va2 T B |

P
g
oo oo oo 0o B . . .
flre) = k2 / dz’/o dr’rI/Z X ,,dﬂ/ dszo(rm)Jo(r’:c)eXp( |2 —2'| Va? + 5%)
—oo ofnk 0
k

Va? + B2

X {mevbnb(‘r')gk(E, e)oF(E) + ok(e)f(r',e) + Z a;-“(e + Aej) f(r', e + Aej)
J

2e+1Ip,
+ [ deot@t e - e +

2e+1I

+ Ik

where we used the following expression:

(E—1Ir)/2

dw?(e)gk(e,e)f(r'»e)} (A1)

2w 27
/0 Jo(zR) = /0 {Jo(a:r)Jo(a:r') +2 5 T (@r) Jon (27) cos{m(ep — (p’)}} = 2 do(ar) Jo(ar).

By performing the Bessel transformation of Eq. (A1) we can obtain
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